Appreciating the distinction between explanatory and predictive modelling

“Two Cultures” One aspect of statistical modeling which can be taken for granted by those with a bit of experience, but may not be immediately obvious to newcomers, is the difference between modeling for explanation and modeling for prediction. When you’re a newbie to modeling you may think that this only has an effect on how you interpret your results and what conclusions you’re aiming to make, but it has a far bigger impact than that, from influencing the way you form the models, to the types of learning algorithms you use, and even how you evaluate their performance.